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On the road to a DNA-protein world
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Following the RNA world and the appearance of ri-
bonuclease reductase activity, it is proposed that the
progression of genetic templates from single-stranded
RNA to DNA occurred gradually via an increasing
deoxyribonucleotide content in the RNA molecules
coupled to an increased polymerase stringency, rather
than in one step corresponding to a major polymerase
evolution (Lazcano et al., 1992). This hypothesis is sup-
ported by both DNA (Lazcano et al., 1992) and RNA
polymerase data (Conrad et al., 1995) that indicate that
the early polymerases possessed rather broad substrate
and template specificities (ribose versus deoxyribose).
This hypothesis envisions mixed RNA-DNA molecules
(M-molecules) composed of randomly interspersed
ribo- and deoxyribonucleotides. The obvious question
is whether such M-molecules served exclusively tem-
plate functions or also served catalytic functions.
With the development of chemical synthesis strat-
egies for RNA compatible with those for DNA,
M-molecules can now be prepared (Usman & Ceder-
gren, 1992) and this question properly addressed. Syn-
thetic M-molecules possess several conspicuous
characteristics, as illustrated by the following exam-
ples. Predominantly deoxyribonucleotide-containing
“hammerhead” ribozymes (i.e., nucleozymes) exhibit
a significant level of cleavage, showing that ribozyme-
type catalysis is not restricted solely to pure RNA
(Bratty et al., 1993). Furthermore, DNA molecules with
catalytic functions (i.e., deoxyribozymes) have been
developed using the powerful in vitro selection ap-
proach. Breaker and Joyce (1994) synthesized a deoxy-
ribozyme with the ability to cleave RNA molecules,
and Cuenoud and Szostak (1995) developed a deoxy-
ribozyme that catalyzes the ligation of DNA substrates.
In addition, several reports have shown that both
M-molecules and pure DNA molecules of sequences
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corresponding to RNA substrates may act as ribozyme
substrates (Cech et al., 1992; Bratty et al., 1993; Per-
reault & Altman, 1992). Moreover, the presence of the
deoxyribonucleotides in ribozymes confers greater sta-
bility toward both aqueous hydrolysis, which is pro-
moted by the 2’-hydroxyl groups, and ribonuclease
degradation (Bratty et al., 1993). Thus, the introduction
of several deoxyribonucleotides into RNA molecules
does not necessarily result in a severe reduction in ei-
ther their catalytic properties or their substrate effi-
ciency. Hence, M-molecules appear to fold in a manner
analogous to pure RNA. This point is also illustrated by
the introduction of a single ribonucleotide into a DNA
helix driving the conformation to the A-type helix char-
acteristic of RNA, as observed in three-dimensional
studies of some Okazaki fragments (Egli et al., 1993).

The initial incorporation of deoxyribonucleotides
into RNA was totally at random due to the indiscrimi-
nate nature of the existing polymerases. The different
nucleotides within the resulting M-molecules were
distinguished solely by their base-pairing properties
and not by their sugar moieties. As a result, catalyti-
cally inactive products lacking a ribonucleotide at a
critical position may have existed; however, whether
all M-molecules required a ribonucleotide at a given
position is not clear, because mutant sequences could
conceivably have released these molecules from the
ribonucleotide requirement. Additionally, catalytically

'inactive products might have been replicated, and

their descendants either re-established catalytic prop-
erties or became specialized for the carrying of genetic
information.

Thus, M-molecules are not only polymerized by en-
zymes but also possess catalytic activities analogous to
those of RNA and may be more stable than pure RNA.
Clearly they satisfy all the requirements for early ge-
netic material, and, when coupled with the concurrent
evolution of polymerase stringency, provide the likely
vehicle for the bridge from the ancestral RNA world to
the modern DNA-protein world.
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